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Abstract— Objective: Our aim was to determine if walking 

speed affected human sensorimotor electrocortical dynamics 
using mobile high-density electroencephalography (EEG). 
Methods: To overcome limitations associated with motion and 
muscle artifact contamination in EEG recordings, we compared 
solutions for artifact removal using novel dual layer EEG 
electrodes and alternative signal processing methods. Dual layer 
EEG simultaneously recorded human electrocortical signals and 
isolated motion artifacts using pairs of mechanically coupled and 
electrically independent electrodes. For electrical muscle activity 
removal, we incorporated electromyographic (EMG) recordings 
from the neck into our mobile EEG data processing pipeline. We 
compared artifact removal methods during treadmill walking at 
four speeds (0.5, 1.0, 1.5, and 2.0 m/s). Results: Left and right 
sensorimotor alpha and beta spectral power increased in 
contralateral limb single support and push off, and decreased 
during contralateral limb swing at each speed. At faster walking 
speeds, sensorimotor spectral power fluctuations were less 
pronounced across the gait cycle with reduced alpha and beta 
power (p<0.05) compared to slower speeds. Isolated noise 
recordings and neck EMG spectral power fluctuations matched 
gait events and showed broadband spectral power increases at 
faster speeds. Conclusion and significance: Dual layer EEG 
enabled us to isolate changes in human sensorimotor 
electrocortical dynamics across walking speeds. A comparison of 
signal processing approaches revealed similar intrastride cortical 
fluctuations when applying common (e.g. Artifact Subspace 
Reconstruction) and novel artifact rejection methods. Dual layer 
EEG, however, allowed us to document and rule out residual 
artifacts, which exposed sensorimotor spectral power changes 
across gait speeds. 
 

Index Terms—electroencephalography, electromyography, 
independent component analysis, legged locomotion 
 

I. INTRODUCTION 
LECTROENCEPHALOGRAPHY (EEG) is a non-invasive, 
lightweight and portable neuroimaging method with fast 

time scale for studying human electrocortical dynamics. 
Unfortunately, speed related changes in human electrical brain 
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activity have been challenging to study because of motion 
artifact contamination at fast gait speeds [1]–[3]. Neural 
pathways between cortical motor planning centers and spinal 
cord circuits have also been a source of contention [4], with 
gait speed changes attributed to subcortical structures that can 
require limited cortical input [5]. 

Gait speed adjustments have been studied across species 
using invasive recordings from cortical and subcortical 
structures. Locomotion speed control has been traced to the 
mesencephalic locomotor region of the midbrain, which 
responds to electrical stimulation by initiating gait and 
proportionally increasing gait speed [5]–[7]. Recently, 
however, slow and fast gait speed mechanisms have been 
dissociated in mice by Caggiano et al. [8] and Josset et al. [9]. 
Separate neuronal populations were identified within 
pedunculopontine nucleus for controlling slow speeds and 
cuneiform nucleus for fast speeds. Separate gait speed control 
mechanisms therefore appear to project from these structures 
through the brainstem via lateral paragigantocellular nucleus 
and ultimately to the spinal cord [5], [8], [10]. 

Although gait speed is modulated by the mesencephalic 
locomotor region, presynaptic inputs to pedunculopontine 
nucleus are received from basal ganglia and medulla, and 
cuneiform nucleus receives input from the periaqueductal grey 
and inferior colliculus [5]. Inhibitory mesencephalic inputs are 
also received from central amygdala, superior colliculus and 
dorsal raphe [5], [11]. Motor cortex, however, has input into 
basal ganglia, which appears to relay into pedunculopontine 
nucleus during slow locomotor control [5]. To understand the 
role of motor cortex during gait, its activity has therefore been 
studied across the stride and during locomotor adjustments. 
 Neuronal activity in motor cortex during animal locomotion 
has revealed fluctuations across the gait cycle. Studies in cats 
by Drew et al. [12], [13] and Beloozerova et al. [14], [15] have 
shown increased motor cortex activity during forelimb swing, 
which further increased during precision stepping. Studies in 
rats, however, showed hindlimb locomotion can be largely 
controlled subcortically [16], [17], though gait timing and 
limb kinematics can be decoded from cortical activity [18]–
[20]. Recently, DiGiovanna and colleagues [21] showed 
neuronal firing in rat motor cortex more closely resembles 
activation patterns in cats than previously thought. 
Specifically, motor cortex firing preceded gait initiation, 
fluctuated with hindlimb trajectories and muscle activities, and 
decreased in more automated behaviors, such as treadmill 
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stepping [21]. Studies in non-human primates have shown 
similar instrastride fluctuations that are highly structured and 
reproducible across gait speeds [22]–[24]. Within specific gait 
phases, however, locomotion speed has shown little effect on 
motor cortex firing rates in cats [25], [26] and rats [21], and 
non-human primates have shown mixed trends [22]–[24]. 
Although human sensorimotor alpha (8-13 Hz) and beta band 
(13-30 Hz) cortical oscillations have shown reduced spectral 
power during upper and lower limb motor preparation and 
execution [27]–[30], and at the instant of gait speed 
adjustments in slow treadmill walking [31], spectral power 
changes at faster walking speeds remain unclear. 

Many human EEG studies have now reported electrocortical 
fluctuations across the gait cycle [32]–[39]. Gwin and 
colleagues [32] first identified gait related spectral fluctuations 
in left and right sensorimotor cortices, along with anterior 
cingulate and posterior parietal cortices. The authors [32] 
showed alpha and beta spectral power increases during double 
support and decreases during limb swing, but the appearance 
of broadband (3-150 Hz) spectral power fluctuations in each 
cortical cluster could relate to motion or muscle artifacts [1], 
[2], [32]. To limit EEG artifacts during locomotion, human 
brain dynamics have therefore largely been studied in slow 
walking and gait-like tasks [32]–[42]. Although scalp EEG 
recordings are prone to artifacts arising from electrode and 
cable motions, as well as confounding electrophysiological 
signals (e.g. eye and muscle) and environmental electrical 
noise, recent hardware and signal processing advances have 
expanded possibilities for studying electrical brain signals in 
dynamic tasks [43], [44]. Dual layer EEG hardware that 
simultaneously records electrocortical signals along with 
isolated noise from secondary sensors can enhance signal 
processing efforts for noise removal and help rule out the 
influence of noise artifacts in EEG recordings during 
locomotion [43], [44]. Capabilities and best practices for dual 
layer EEG processing, however, have yet to be established for 
human EEG recordings. Comparisons among common and 
novel signal processing approaches using dual layer EEG 
hardware are therefore needed for removing electrical, 
mechanical, and biological artifacts from mobile EEG. 
 Our aim was to study human electrocortical dynamics 
across a range of gait speeds using mobile EEG. Because 
motion and muscle artifacts have imposed barriers to the 
collection and interpretation of human scalp EEG at fast gait 
speeds, we evaluated traditional and novel processing 
approaches for motion and muscle artifact removal using dual 
layer EEG. We hypothesized that alpha and beta EEG spectral 
power would increase during double support and decrease 
during limb swing, independent of gait speed, and that dual 
layer EEG would allow motion and muscle artifacts to be 
quantified and removed through signal processing. Dual layer 
EEG artifact removal may then uncover gait speed-related 
changes in human EEG spectral power. 

II. METHODS AND MATERIALS 
Prior to participation, nine healthy subjects (6M, 3F, mean 

age 27 ± 4 years) provided institutionally approved informed 

consent. Institutional Review Boards at the University of 
Michigan and University of Florida approved the study. To 
begin each collection, subjects were fit with an appropriately 
sized 128-channel EEG cap and the location of each scalp 
electrode was measured with a Zebris digitizing system. After 
participation, each subject received an anatomical magnetic 
resonance image used during EEG source localization. 

A. Dual layer EEG hardware 
Our dual layer EEG array consisted of 128-scalp interfacing 

EEG electrodes, with 40 mechanically coupled and inverted 
noise-only electrodes that were electrically isolated from the 
primary scalp EEG sensors [43], [44] (Fig. 1). The 128-scalp 
EEG electrodes were pin type BioSemi ActiveTwo sensors 
that fit into a standard 128-channel EEG cap after applying 
conductive gel into each electrode well. The 40-noise 
electrodes were flat type BioSemi ActiveTwo sensors that 
were paired with scalp sensors evenly distributed across the 
EEG cap. Wires from each EEG-noise pair were bundled with 
each other electrode wire, forming a single cable bundle 
exiting the rear of the EEG cap (Fig. 1A). To serve as an 
electrically isolated artificial skin circuit for the noise 
electrodes, a custom conductive fabric cap (Eeonyx, Fig. 1B) 
was fit over the inverted noise sensors, which approximately 
matched the resistivity of human skin [44]. Conductive gel 
was inserted between the conductive fabric and the inverted 
recording electrode to complete the artificial skin circuit. Eight 
flat type BioSemi ActiveTwo sensors were also placed on the 
left and right sternocleidomastoid and trapezius muscles (2 
electrodes per muscle), capturing EMG activity from the neck. 
In total, the 128-scalp EEG and 8-neck EMG electrodes were 
collected from a single BioSemi collection box and the 40-
noise electrodes were collected from a separate BioSemi 
collection box. The two systems were daisy-chained, which 
stored the EEG, EMG, and noise data in a single synchronized 
data file sampled at 512 Hz. During testing, the BioSemi 
collection boxes were placed above the subject on a 
bodyweight support apparatus. 

B. Experimental protocol 
Subjects completed testing in randomized walking speed 

conditions (0.5, 1.0, 1.5, 2.0 m/s) on a Bertec force-

A.                 B. 

 
Figure 1. Dual layer EEG displayed on a mannequin head (A.). 128-channel 
scalp interfacing EEG electrodes and 40 mechanically coupled and inverted 
noise-only electrodes bundled into a dual layer EEG array. Noise-only 
sensors were referenced to an overlaid custom conductive fabric cap (B.). 
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instrumented treadmill used to detect heel strike and toe off 
events for each limb. During testing, additional experimental 
conditions were completed, but we focus this analysis on 
continuous walking conditions at different speeds. Each speed 
condition lasted 3-minutes with rest periods between. Subjects 
were instructed to walk normally while restricting unnecessary 
eye blinks, head motions, or jaw clenching. Because our 
fastest locomotion condition was near the preferred human 
walk to run transition speed [45],  we asked subjects to remain 
walking in each condition. Prior to gait speed conditions, a 
standing baseline trial was also recorded. 

C. EEG processing 
Figure 2 illustrates our EEG processing pipeline used to 

isolate and fit electrocortical sources to each subject’s brain, 
perform time-frequency and spectral analyses, and statistical 
testing in EEGLab [46]. We evaluated multiple EEG 
processing procedures that included two single layer EEG 
methods (Fig. 2A) and four dual layer EEG methods (Fig. 2B) 
using EEGLab functions and custom MATLAB scripts. To 
distinguish traditional single layer EEG processing from our 
dual layer EEG approach, we highlighted novel processing 
steps in black boxes (Fig. 2B). Single and dual layer EEG 
processing differed in the number of channels analyzed, data 
preprocessing, independent component analysis input, and 
independent component rejection. Otherwise, common EEG 
processing steps are shown in white boxes (Fig. 2).  

Common EEG processing steps involved high-pass filtering 
channel data (1Hz) followed by preprocessing. Next, data 

from each speed condition were concatenated and outlier 
channels were rejected using statistical criteria (kurtosis and 
standard deviation) [32]. In methods without preprocessing, 
EEG data were common average referenced after channel 
rejection (methods 1 & 3, Fig. 2). A robust average reference 
was applied before each other preprocessing method by 
excluding outlier channels from the average. Prior to 
performing adaptive mixture independent component analysis 
(AMICA) [47], we down sampled data to 256 Hz. We then 
modeled independent components as equivalent current 
dipoles using a three layer boundary element model and 
subject-specific anatomical magnetic resonance image warped 
to the Montreal Neurological Institute standard brain using 
DIPFIT and Fieldtrip function in EEGLab [48]. Dipoles with 
residual variance less than 0.15 were retained for further 
analysis. We extracted complete gait cycles from our EEG 
data using synchronized vertical ground reaction force gait 
events, delimited by right heel strike. Time-frequency analysis 
was performed using single trial spectrograms that were 
baseline normalized within each speed condition, and time-
warped to create event related spectral perturbation (ERSP) 
plots across the gait cycle [32], [50]. Group analysis relied on 
k-means clustering using vectors jointly coding dipole 
locations, scalp maps, and spectral power similarities in 
EEGLab [40], [49]. Clusters containing multiple independent 
components per subject were first aggregated within subjects 
to avoid artificially inflating sample size during statistical 
testing [44]. We then averaged time-frequency data across 
subjects in each cluster. Next, we set non-significant spectral 

A.               B. 

 
Figure 2. Single (A.) and dual layer EEG (B.) processing pipelines. Common EEG processing steps (white boxes) and dual layer specific EEG processing steps 
(black boxes). Single-layer EEG approaches relied on 128-scalp EEG electrodes without additional preprocessing (1: Single layer EEG) and after Artifact 
Subspace Reconstruction (2: ASR). Dual-layer EEG approaches relied on 128-scalp EEG electrodes, 40 isolated noise-only electrodes, and 8 neck EMG 
electrodes merged into an adaptive mixture independent component analysis (AMICA) after contrasting preprocessing steps. Dual-layer EEG processing was 
completed without additional preprocessing (3: Dual layer EEG), after frequency domain noise cancellation (4: Noise cancel), after ASR (5), and after applying 
frequency domain noise cancellation to artifact components from principal component analysis and canonical component analysis (6: PCA+CCA). 
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power changes to zero using bootstrap methods in EEGLab (α 
= 0.05). Cortical clusters with components from more than 
50% of the subjects were further analyzed. Because we 
compared multiple EEG processing methods, we focused our 
analysis on consistent cortical clusters with spectral 
fluctuations across the gait cycle. Finally, we evaluated 
spectral power differences among speed conditions using non-
parametric bootstrap-based ANOVA in EEGLab (α = 0.05). 

D. Single layer EEG processing 
Single layer EEG processing (Fig. 2A) was completed 

without additional preprocessing (1: Single layer EEG) and 
after artifact subspace reconstruction (2: ASR) in EEGLab.  
ASR is a commonly used EEG preprocessing method that 
relies on 0.5 s sliding window principal component analysis to 
correct and reconstruct non-stationary high variance EEG data 
based on statistical criteria from clean EEG [51]. Here, we 
used a standing baseline for each subject during ASR and 
applied a 7 standard deviation cutoff based on pilot testing. 
The remainder of each single layer EEG processing approach 
was performed as outlined above and in Fig. 2A using data 
from the scalp interfacing dual layer EEG sensors and 
omitting data from the outer layer sensors (Fig. 1). 

E. Dual layer EEG processing 
 Dual layer EEG processing (Fig. 2B) was completed 
without additional preprocessing (3: Dual layer EEG), after 
frequency domain noise cancellation (4: Noise cancellation), 
after artifact subspace reconstruction (5: ASR), and after 
applying frequency domain noise cancellation to artifact 
components from principal component analysis and canonical 
component analysis (6: PCA+CCA). Each dual layer EEG 
preprocessing approach relied on methods adapted from 
Nordin et al. [44], using similar AMICA input and 
independent component rejection steps. In each case, dual 
layer EEG preprocessing output was merged with 40-channel 
dual layer noise data and 8-channel EMG data by stacking 
channels. We reduced dual layer EEG AMICA output to 136 
dimensions using PCA. To reject dual layer EEG independent 
components, component spectra were compared to noise and 
EMG channels using a polynomial fit. Components with flat 
spectra (linear slope ≥ -0.06) or those matching noise or 
muscle (R2 ≥ 0.99) were rejected.  

Frequency domain noise cancellation was applied using 
methods from Nordin et al. [43]. This method cancels artifacts 
from scalp-interfacing EEG electrodes using artifacts captured 
by dual layer noise electrodes. Because our array consisted of 
128-EEG electrodes and 40-matched noised pairs, we used 
spherical interpolation in EEGLab to compute matched noise 
pairs for all 128-EEG electrodes. We then used the noise 
cancellation algorithm to separately perform Fast Fourier 
Transform (FFT) on the EEG and noise data in a 0.5 s sliding 
window with 94% overlap. Noise frequencies in the EEG 
signal were cancelled using cutoffs based on the median 
Fourier coefficients across frequencies, and the signal was 
reconstructed using inverse FFT [43]. We used separate upper 
(>6x median) and lower cutoffs (<2x median) for motion 

artifact and electrical noise cancellation, respectively. To 
account for magnitude differences between EEG and noise 
signals, we scaled noise FFT coefficients to the median EEG 
FFT coefficients and reconstructed an amplitude-matched 
noise signal, which we later used in dual layer AMICA. Our 
aim was to match noise and EEG artifact signal amplitudes by 
compensating for resistivity differences between the scalp and 
conductive fabric. This overall approach outperformed direct 
time or frequency domain noise subtractions using algorithm 
parameters selected during pilot testing. 

To remove motion and muscle artifacts from our dual layer 
EEG data, we combined preprocessing approaches. Because 
ASR relies on principal component analysis to reconstruct 
signal components that deviate from clean EEG data, we 
developed a process to clean large variance components based 
on comparisons to dual layer noise electrodes. To do so, we 
used a 0.5 s sliding window with 50% overlap to perform PCA 
on the EEG channel data. We replaced outlier PC scores 
(>2SD from the median) with the median and cleaned 
components highly correlated with 40-channel dual layer noise 
mean (>5SD from the median noise correlation) using 
frequency domain noise cancellation (cancel Fourier 
coefficients >2x noise median). The signal was then 
reconstructed from artifact cleaned principal components. 

Next, because canonical component analysis has been used 
to remove EEG motion and muscle artifacts [52], [53], we 
used a 3.0 s sliding window with 50% overlap to perform 
CCA on the PCA preprocessed EEG data. CCA input relied on 
channel data with a 1-frame lag autocorrelation, which 
separates low frequency, high autocorrelation motion artifact 
components from high frequency, low autocorrelation 
electrical and muscle artifact components. Components with 
low autocorrelation (below the component-autocorrelation plot 
knee) or biased power spectra (negatively skewed: high 
frequency, or outlier skewness or kurtosis: >2SD from the 
median) were cleaned using frequency domain noise 
cancellation (cancel Fourier coefficients >6x noise median or 
<2x noise median). The signal was then reconstructed from 
artifact cleaned canonical components. We found that using 
PCA before CCA to cancel large artifacts improved the 
performance of CCA for muscle and electrical artifact 
cancellation, as well as residual motion artifacts. Overall 
parameter selection was the result of pilot testing. 

F. Dual layer EEG noise and EMG channel processing 
 After analyzing our EEG data using each single and dual 
layer method, we performed similar channel-based analyses 
on the 40 dual layer noise channels and 8 neck EMG channels. 
The purpose was to evaluate pure motion and muscle artifacts 
by examining equivalent spectral power fluctuations across the 
gait cycle and changes in spectral power among speed 
conditions. We compared motion and muscle artifact signal 
changes to our preprocessed and ICA-derived electrocortical 
sources. Channel data were analyzed after high pass filtering 
at 1 Hz, down sampling to 256 Hz, extracting gait cycle 
epochs, and performing time-frequency analysis. ERSP plots 
were normalized to baseline within each speed condition and 
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masked for significance (α = 0.05). Spectral power differences 
among speed conditions were also assessed using non-
parametric bootstrap-based ANOVA in EEGLab (α = 0.05).  

III. RESULTS 
Left and right sensorimotor cortices showed spectral power 

fluctuations across the gait cycle using contrasting EEG 
processing methods. Figure 3 shows increased left 
sensorimotor alpha and beta spectral power surrounding left 
heel strike, and decreased alpha and beta spectral power after 
right toe off. Left sensorimotor alpha and beta fluctuations 
therefore increased during right limb single support and push 
off in double support, but decreased during right limb swing. 

In contrast, Figure 4 predominantly shows asynchronous 
spectral power fluctuations in right sensorimotor cortex 
compared to left. Right sensorimotor alpha and beta power 
increased surrounding right heel strike, followed by decreased 
alpha and beta power after left toe off. Right sensorimotor 
alpha and beta power therefore decreased during left limb 
swing, but increased during left limb single support and push 
off in double support. At faster gait speeds, electrocortical 
fluctuations were less pronounced across the gait cycle, with 
limited amplitude, duration, and spectral bandwidth compared 
to slow walking (Figs. 3 & 4, ERSPs). Supplementary Figures 
A and B show spectral power fluctuations from Figures 3 and 
4 without significance masking. 

 
Figure 3. Left sensorimotor cortex data processing comparisons (separate processing in each row). Two traditional single-layer EEG approaches were applied 
to the scalp interfacing dual layer EEG sensors (top two rows) and four dual-layer EEG approaches incorporated all sensor data (bottom four rows). Left to 
Right: Mean cluster topographic map, Dipole locations (Blue: subject dipoles, Red: cluster centroid), Event Related Spectral Perturbation plots at each walking 
speed (R: right, L: left, HS: heel strike, TO: toe off, significance masked: p < 0.05), Power spectral density at each walking speed (significant speed differences 
at each frequency identified below each plot in black, p < 0.05). ERSP plots without statistical significance masking are in Supplementary Fig. A. 
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Discrepancies were apparent among EEG processing 
approaches when assessing spectral power fluctuations across 
the gait cycle. Similarities were evident in the scalp map, 
dipole locations and ERSP plots among single layer and dual 
layer EEG processing using ASR (Figs. 3 & 4, rows 2 & 5, 
respectively) and dual layer PCA+CCA (Figs. 3 & 4, row 6). 
Each of these methods showed lateralized asynchronous 
sensorimotor electrocortical fluctuations across the gait cycle. 
In contrast, single and dual layer EEG without additional 
preprocessing (Figs. 3 & 4, rows 1 & 3, respectively) and 
noise cancellation (Figs. 3 & 4, row 4) did not show consistent 
gait-related spectral power fluctuations, despite relatively 
similar scalp topography and dipole locations compared to 

each other processing method.  
Spectral power changes across speed conditions further 

exposed differences among EEG processing methods (Figs. 3 
& 4, right column). Left sensorimotor cortex mostly showed 
increased gamma power at faster gait speeds (p < 0.05) based 
on single layer EEG and ASR (Fig. 3, rows 1 & 2, 
respectively), as well as dual layer EEG without preprocessing 
and after noise cancellation (Fig. 2, rows 3 & 4, respectively). 
In contrast, dual layer ASR and PCA+CCA showed reduced 
left sensorimotor beta power at faster gait speeds (Fig. 3, rows 
5 & 6, p < 0.05), and PCA+CCA also showed reduced alpha 
power at faster speeds (Fig. 3, row 6, p < 0.05). Similar to the 
left, right sensorimotor cortex showed greater gamma power at 

 
Figure 4. Right sensorimotor cortex data processing comparisons (separate processing in each row). Two traditional single-layer EEG approaches were applied 
to the scalp interfacing dual layer EEG sensors (top two rows) and four dual-layer EEG approaches incorporated all sensor data (bottom four rows). Left to 
Right: Mean cluster topographic map, Dipole locations (Blue: subject dipoles, Red: cluster centroid), Event Related Spectral Perturbation plots at each walking 
speed (R: right, L: left, HS: heel strike, TO: toe off, significance masked: p < 0.05), Power spectral density at each walking speed (significant speed differences 
at each frequency identified below each plot in black, p < 0.05). ERSP plots without statistical significance masking are in Supplementary Fig. B. 
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faster speeds (p < 0.05) based on single layer EEG and ASR 
(Fig. 4, rows 1 & 2, respectively), as well as noise cancellation 
and dual layer ASR (Fig. 4, rows 4 & 5, respectively, p < 
0.05). In contrast, PCA+CCA, showed reduced beta power at 
faster gait speeds (Fig. 4, row 6, p < 0.05).  

Dual electrode noise recordings captured spectral 
fluctuations due to motion artifacts across the gait cycle (Fig. 
5). Noise fluctuations varied slightly across scalp locations, 
but consistently showed increased spectral power following 
heel strike, during double support, and reduced spectral power 
during swing, without lateralization. Artifact related 
broadband spectral power fluctuations are seen clearly in 
Supplementary Figure C, which shows Figure 5 ERSPs 
without significance masking. Spectral power fluctuations 
tended to increase in amplitude at faster gait speeds (Fig. 5 & 
Supplementary Fig. C ERSPs), along with broadband spectral 
power increases (Fig. 5, right column, p < 0.05).  

Neck EMG recordings showed spectral power fluctuations 
across the gait cycle (Fig. 6). Each neck muscle recording 
contained lateralized high frequency gamma oscillations, and 
broadband spectral fluctuations were evident without 
significance masking (Supplementary Fig. D). Left and right 
sternocleidomastoid and trapezius muscles predominantly 
showed increased spectral power preceding heel strike and 
during double support with the contralateral limb leading, and 
prior to ipsilateral heel strike. Left and right neck muscles also 
showed decreased spectral power during double support with 
the ipsilateral limb leading, through swing. Lateralized neck 
EMG spectral power fluctuations did not match left and right 
sensorimotor fluctuations across the gait cycle, nor did they 
match dual electrode noise recordings. Neck EMG spectral 
fluctuations tended to increase at faster gait speeds (Fig. 6 & 
Supplementary Fig. D ERSPs, p < 0.05), along with 
broadband spectral power increases (Fig. 6, right column).  

 
Figure 5. Exemplar dual electrode noise channel data. Left to Right: Noise channel scalp location (red circle), Event Related Spectral Perturbation plots at each 
walking speed (R: right, L: left, HS: heel strike, TO: toe off, significance masked: p < 0.05), Power spectral density at each walking speed (significant speed 
differences at each frequency identified below each plot in black, p < 0.05). ERSP plots without statistical significance masking are in Supplementary Fig. C. 



TBME-01968-2018.R1 
 

8 

IV. DISCUSSION 
 We observed asynchronous spectral power fluctuations in 

left and right sensorimotor cortices across the gait cycle, with 
reduced duration and frequency bandwidth at faster gait 
speeds. Sensorimotor alpha and beta power increased during 
contralateral limb single support and push off, and decreased 
during contralateral limb swing. Mean spectral power across 
the gait cycle showed reduced left and right sensorimotor beta 
power, and reduced right sensorimotor alpha power, at faster 
gait speeds, after removing muscle artifacts. Gamma power 
increased in left and right sensorimotor cortices at faster gait 
speeds without removing EEG muscle artifacts, but did not 
show gait speed differences after EMG artifact removal.  

By simultaneously collecting isolated noise recordings from 
our dual layer EEG electrodes, we were able to characterize 
spectral power fluctuations due to motion artifacts across the 
gait cycle at a range of speeds (Fig. 5). Motion artifact related 
spectral power fluctuations increased with gait speed and 
overlapped with left and right sensorimotor electrocortical 
fluctuations in Figures 3 and 4, which illustrates challenges 
involved in isolating brain signals from scalp EEG during 
locomotion. After preprocessing with ASR or PCA+CCA, 
however, we were able to identify robust lateralized 
sensorimotor cortical activity across a range of gait speeds that 

is distinct from isolated EEG motion artifacts and EMG 
recordings. Dual layer EEG therefore allowed us to rule out 
residual artifacts from our electrocortical sources.  

Our observed changes in sensorimotor dynamics with gait 
speed are largely in agreement with invasive recordings during 
animal locomotion. Our human electrocortical spectral power 
fluctuations occurred within specific phases of the gait cycle 
that were maintained across locomotion speeds These data 
reflect similar neuronal firing rate patterns throughout the gait 
cycle in cats [25], [26], rats [21] and non-human primates 
[22]–[24], with neuronal spike rates that varied across the 
stride. Increased firing rates within the motor cortex have also 
been reported in transitions between single and double support 
[21], [22] and during limb swing [12], [13], [15], [24]. Our 
EEG data had spectral power increases in sensorimotor 
cortices during contralateral limb single support and push off, 
and decreases in swing. Compared to slower speeds, however, 
faster walking speeds had reduced spectral power fluctuation 
durations and frequency bandwidth in the gait cycle. Reduced 
overall sensorimotor alpha and beta power at faster gait speeds 
suggests greater cortical involvement compared to slow 
walking [54]. One explanation is that sensorimotor cortices are 
processing increased sensory feedback throughout the gait 
cycle at faster speeds. If sensorimotor cortex is more attuned 
to sensory feedback, it could be better primed for performing 

 
Figure 6. Exemplar neck EMG channel data (left and right sternocleidomastoid and trapezius muscles). Left to Right: EMG channel location (red circle), Event 
Related Spectral Perturbation plots at each walking speed (R: right, L: left, HS: heel strike, TO: toe off, significance masked: p < 0.05), Power spectral density 
at each walking speed (significant speed differences at each frequency identified below each plot in black, p < 0.05). ERSP plots without statistical significance 
masking are in Supplementary Fig. D. 
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unexpected gait adjustments at fast speeds, such as stepping 
over obstacles [44]. Although animal studies have shown 
increased, decreased, and unchanging neuronal firing rates in 
sensorimotor cortex with changes in locomotion speed [21]–
[26], comparisons between neuronal firing rates and EEG 
spectral power are indirect. Despite substantial evidence that 
locomotor speed is largely controlled subcortically [5]–[11], 
sensory integration involves many cortical structures [13]. 
Reduced alpha and beta EEG spectral power from human 
primary motor and parietal cortices at the instant of slow gait 
speed transitions (~0.3-0.6 m/s) have therefore exposed 
cortical contributions to gait speed adjustments [31].  

Slow gait-like stepping tasks have previously shown 
sensorimotor electrocortical fluctuations measured with EEG. 
During slow robot assisted walking (~0.5-0.6 m/s), Wagner 
and colleagues [33] and later, Seeber et al. [34], [35], showed 
low gamma fluctuations (~24-40 Hz) in central sensorimotor 
areas, without lateralization, though task differences might 
present contrasting brain dynamics compared to unassisted 
gait. Bradford and colleagues [36] subsequently showed 
lateralized asynchronous spectral fluctuations in left and right 
sensorimotor cortices during level and incline walking at 
0.75m/s, and Oliveira et al. [37] isolated similar activities in 
somatosensory cortices during walking at 1.0 m/s with eyes 
open and closed. In each case, alpha and beta power increased 
in double support during contralateral limb push off, and 
decreased during swing, in agreement with our results. 

Bulea and colleagues [38] also studied slow (0.8-0.9 m/s) 
and fast treadmill walking (1.4-1.5 m/s), in active and passive 
speed control conditions, with some evidence of lateralized 
spectral fluctuations in left and right motor cortices in slow 
walking. The authors [38], however, applied ASR to their 
EEG data using an aggressive three standard deviation cutoff 
that can attenuate or remove brain signals along with artifacts. 
In separate studies, Luu et al. also applied ASR with a three 
standard deviation cutoff, but did not report lateralized 
sensorimotor activity during level walking, and ramp and stair 
ascent [41], nor while controlling an avatar during treadmill 
walking [42]. Recently, however, Artoni and colleagues [39] 
reported spectral power fluctuations across the gait cycle in 
cortical motor regions after applying ASR with 20 standard 
deviation cutoff. Similar to our results and previous studies, 
the authors showed spectral power decreases during limb 
swing and increases during double support, and the authors 
were able to identify unidirectional connectivity to lower limb 
muscles during limb swing, indicative of motor drive [39]. 

Although we report lateralized activity in sensorimotor 
cortices, gait related spectral fluctuations have been reported 
in several cortical areas in previous mobile EEG studies, 
including occipital lobe, supplementary motor area, anterior 
cingulate, posterior parietal, prefrontal, and premotor cortices 
[32], [36]–[39], [41], [42]. We therefore cannot rule out gait 
speed changes in other cortical structures, but restricted our 
analysis to clusters that appeared in multiple preprocessing 
methods, and with prominent spectral fluctuations across the 
gait cycle. The inclusion of additional tasks, contrasting EEG 
processing, electrode configurations, or residual motion and 

muscle artifacts, could also lead to the appearance of 
intrastride spectral fluctuations in other brain areas. Additional 
studies that apply preprocessing steps to remove artifacts 
while preserving electrocortical activity are therefore needed. 

In addition to our reported spectral power fluctuation 
patterns across the gait cycle, mean spectral power revealed 
important electrocortical changes among gait speeds. Reduced 
sensorimotor alpha and beta power was observed at faster gait 
speeds, often coinciding with increased gamma power (Figs. 3 
& 4, right column). Although multiple processing methods 
showed these trends, dual layer EEG preprocessing with PCA 
and CCA appeared to limit artifact related variability that 
masked statistical differences in alpha and beta bands, and 
broad gamma band increases that were similar to motion 
artifact and EMG recordings (Figs. 5 & 6, right column). 
Decreased sensorimotor alpha and beta spectral power are 
expected electrocortical responses during motor preparation 
and execution [27]–[30], but increased gamma power has also 
been reported in isolated upper and lower limb movements 
using electrocorticography, magnetoencephalography, and 
EEG [27], [55]–[57]. Observed spectral power differences 
among gait speeds could therefore indicate signal over 
cleaning when applying dual layer PCA and CCA for motion 
and muscle artifact removal [58]. Movement related gamma 
band activity, however, tends to be localized with short 
duration around movement onset and offset, which is difficult 
to record using scalp EEG because of its comparatively low 
signal to noise ratio and spectral overlap with muscle activity 
[55]–[57]. Nevertheless, increased primary motor cortex 
gamma power has been reported by McCrimmon et al. using 
electrocorticography during treadmill walking [59], and this 
activity showed intrastride fluctuations. The authors reported 
more gamma bursts across the gait cycle at faster walking 
speed, but this finding was limited to one of two epileptic 
patients in the study [59]. Intrastride fluctuations were also 
shown in alpha and beta bands for one subject [59], but the 
authors acknowledge the possibility of alpha band motion 
artifact contamination in their electrcortographic data. Because 
the scalp, skull, and dura mater can also blur and low pass 
filter electrocortical signals [57], [60], [61], representations of 
gait related electrocortigraphic gamma activity might differ 
from scalp EEG, particularly during locomotion when muscle 
activity increases.  

Acknowledging uncertainty in ground truth EEG spectral 
content during locomotion, intrastride alpha and beta 
fluctuations are well reported during slow walking using EEG. 
Bilateral sensorimotor alpha and beta activities therefore 
appear to be involved in regulating stride dynamics. Although 
McCrimmon and colleagues [59] attributed increased primary 
motor cortex gamma activity to high level locomotor control 
processes, such as adjusting gait speed and duration, rather 
than sensory processing, recordings from additional brain 
structures are required to draw concrete conclusions. 
Decreased bilateral coordination has also been reported based 
on lower limb gait dynamics in slow compared to fast walking 
[62]. The authors speculated that slower gait speeds might 
therefore require greater attentional resources and supraspinal 
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input [62]. Ultimately, locomotor control likely involves 
complex interactions among brain areas that integrate sensory 
and motor processes, particularly during online gait 
adjustments. Fortunately, high density EEG captures 
electrocortical signals across the scalp, which has uncovered 
interactive processes among cortical structures in upper limb 
tasks [63], [64]. Here we show that novel hardware and signal 
processing can enable similar advances in the study of 
locomotor control using mobile EEG, though additional work 
is needed to decode the information from these brain signals 
during gait. Along these lines, reduced EEG beta power was 
recently reported over the contralateral sensorimotor cortex 
during a seated knee extension task in spinal cord injured 
subjects [65]. This spectral power decrease during movement 
was followed by a spectral power increase after movement 
termination that further increased with spinal cord stimulation. 
The authors attributed this EEG spectral power change to 
cortical excitability modulation through proprioceptive 
pathways [65]. 

To study a wide range of locomotion speeds, we chose 
relatively aggressive cleaning parameters in each 
preprocessing method. Although these parameters are 
adjustable, some evidence of over cleaning was apparent using 
ASR, which showed reduced delta and theta spectral power in 
2.0 m/s walking (Figs. 3 & 4, rows 2 & 5, right column). Low 
frequency spectral power reductions, however, were also 
observed when applying higher standard deviation cutoffs 
(e.g. 10 and 20). Notably, similar spectral power fluctuation 
patterns were apparent after applying ASR to single and dual 
layer EEG, compared to dual layer EEG processing using 
PCA and CCA. In this case, however, single layer EEG also 
benefitted from a passive mechanical effect of cable bundling 
and the overlaid secondary cap [43], [44] because all data 
were collected with dual layer EEG hardware. An important 
distinction between ASR and our dual layer EEG approach 
using PCA and CCA is that our artifact component selection 
and cleaning criteria are based on simultaneous noise 
recordings, rather than statistical features from clean EEG 
while subjects were motionless. Dual layer EEG processing 
can therefore be carried out without calibration or baseline 
comparisons, which can enable more straightforward online 
EEG artifact removal without assumed similarities between 
EEG recorded at rest and EEG recorded during motor tasks. 
Although each approach carries assumptions, we believe 
objective artifact measures can improve EEG cleaning 
reliability and validity. Our ability to directly compare artifact 
recordings to pre and post-processed EEG removes 
uncertainty when interpreting brain activity during movement. 
Artifact identification is therefore simplified during channel-
level preprocessing and independent component rejection, 
similar to previous approaches that identified and filtered 
components based on accelerometer data [66], [67]. Our dual 
layer EEG approach, however, is well-suited for removing 
electrical artifacts [42]. Dual layer EEG processing might also 
benefit from alternative cleaning methods, including adaptive 
filtering [68]. Future signal processing evaluations should 
nevertheless include benchmark tests with ground truth signals 

broadcast through electrical head phantom devices during 
motion [43], [44], [69], [70]. 

In the current EEG processing approach, we applied 
frequency domain noise cancellation to artifact related 
principal and canonical components. Frequency domain noise 
cancellation was also applied directly to EEG channel data, 
but was less effective at removing artifacts that masked gait 
related electrocortical fluctuations (Figs. 3 & 4, row 4). 
Component decomposition methods prior to EEG cleaning 
therefore appeared to be more effective at isolating noise. We 
elected to clean rather than reject artifact related components 
in order to limit over cleaning and data rank reductions prior 
to ICA. Related to these concerns, we acknowledge contention 
surrounding PCA dimension reduction prior to ICA [71], but 
do not believe this step dramatically altered our ICA-derived 
brain sources during dual layer EEG processing. We do, 
however, note fewer subjects and components contributed to 
our cortical clusters after dual layer processing (Figs. 3 & 4, 
left column), which is likely due to additional artifact 
component rejection steps. Ultimately, these steps helped to 
ensure our electrocortical clusters were free of artifacts. 

V. CONCLUSION 
Human sensorimotor electrocortical dynamics changed with 

gait speed, revealing lateralized sensorimotor activity tied to 
gait events. Intrastride electrocortical activity showed left and 
right sensorimotor alpha and beta power increased in 
contralateral limb single support and push off, and decreased 
during swing at each gait speed. At faster speeds, spectral 
power fluctuations had limited duration and bandwidth, along 
with reduced alpha and beta power across the gait cycle, after 
dual layer EEG motion and muscle artifact removal. Reduced 
sensorimotor spectral power could be indicative of greater 
cortical resources attuned to sensory feedback at faster 
locomotion speeds. This would prime sensorimotor cortices 
for performing sudden gait adjustments. Using our dual layer 
EEG hardware we were able to quantify artifact sources and 
clean noisy data. Isolated noise recordings showed discernible 
spectral power fluctuations from electrocortical activity after 
preprocessing, which helped rule out the effects of motion and 
muscle artifacts. Dual layer EEG can therefore help expand 
possibilities for studying human brain activity in dynamic 
tasks. 
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